364 research outputs found

    Generalized Satisfiability Problems via Operator Assignments

    Full text link
    Schaefer introduced a framework for generalized satisfiability problems on the Boolean domain and characterized the computational complexity of such problems. We investigate an algebraization of Schaefer's framework in which the Fourier transform is used to represent constraints by multilinear polynomials in a unique way. The polynomial representation of constraints gives rise to a relaxation of the notion of satisfiability in which the values to variables are linear operators on some Hilbert space. For the case of constraints given by a system of linear equations over the two-element field, this relaxation has received considerable attention in the foundations of quantum mechanics, where such constructions as the Mermin-Peres magic square show that there are systems that have no solutions in the Boolean domain, but have solutions via operator assignments on some finite-dimensional Hilbert space. We obtain a complete characterization of the classes of Boolean relations for which there is a gap between satisfiability in the Boolean domain and the relaxation of satisfiability via operator assignments. To establish our main result, we adapt the notion of primitive-positive definability (pp-definability) to our setting, a notion that has been used extensively in the study of constraint satisfaction problems. Here, we show that pp-definability gives rise to gadget reductions that preserve satisfiability gaps. We also present several additional applications of this method. In particular and perhaps surprisingly, we show that the relaxed notion of pp-definability in which the quantified variables are allowed to range over operator assignments gives no additional expressive power in defining Boolean relations

    Uncertainty inequalities on groups and homogeneous spaces via isoperimetric inequalities

    Full text link
    We prove a family of LpL^p uncertainty inequalities on fairly general groups and homogeneous spaces, both in the smooth and in the discrete setting. The crucial point is the proof of the L1L^1 endpoint, which is derived from a general weak isoperimetric inequality.Comment: 17 page

    Laguerre-Gaussian Modes and the Wigner Transform

    Full text link
    Recent developments in laser physics have called renewed attention to Laguerre-Gaussian (LG) beams of paraxial light. In this paper we consider the corresponding LG modes for the two-dimensional harmonic oscillator, which appear in the transversal plane at the laser beam's waist. We see how they arise as Wigner transforms of Hermite-Gaussian modes, and we proceed to find a closed form for their own Wigner transforms, providing an alternative to the methods of Simon and Agarwal. Our main observation is that the Wigner transform intertwines the creation and annihilation operators for the two classes of modes.Comment: 12 pages, minor corrections; submitted, Journal of Modern Optic

    Haar expectations of ratios of random characteristic polynomials

    Get PDF
    We compute Haar ensemble averages of ratios of random characteristic polynomials for the classical Lie groups K = O(N), SO(N), and USp(N). To that end, we start from the Clifford-Weyl algebera in its canonical realization on the complex of holomorphic differential forms for a C-vector space V. From it we construct the Fock representation of an orthosymplectic Lie superalgebra osp associated to V. Particular attention is paid to defining Howe's oscillator semigroup and the representation that partially exponentiates the Lie algebra representation of sp in osp. In the process, by pushing the semigroup representation to its boundary and arguing by continuity, we provide a construction of the Shale-Weil-Segal representation of the metaplectic group. To deal with a product of n ratios of characteristic polynomials, we let V = C^n \otimes C^N where C^N is equipped with its standard K-representation, and focus on the subspace of K-equivariant forms. By Howe duality, this is a highest-weight irreducible representation of the centralizer g of Lie(K) in osp. We identify the K-Haar expectation of n ratios with the character of this g-representation, which we show to be uniquely determined by analyticity, Weyl group invariance, certain weight constraints and a system of differential equations coming from the Laplace-Casimir invariants of g. We find an explicit solution to the problem posed by all these conditions. In this way we prove that the said Haar expectations are expressed by a Weyl-type character formula for all integers N \ge 1. This completes earlier work by Conrey, Farmer, and Zirnbauer for the case of U(N).Comment: LaTeX, 70 pages, Complex Analysis and its Synergies (2016) 2:

    Harnack inequality for fractional sub-Laplacians in Carnot groups

    Full text link
    In this paper we prove an invariant Harnack inequality on Carnot-Carath\'eodory balls for fractional powers of sub-Laplacians in Carnot groups. The proof relies on an "abstract" formulation of a technique recently introduced by Caffarelli and Silvestre. In addition, we write explicitly the Poisson kernel for a class of degenerate subelliptic equations in product-type Carnot groups

    Quantum-Classical Correspondence of Dynamical Observables, Quantization and the Time of Arrival Correspondence Problem

    Full text link
    We raise the problem of constructing quantum observables that have classical counterparts without quantization. Specifically we seek to define and motivate a solution to the quantum-classical correspondence problem independent from quantization and discuss the general insufficiency of prescriptive quantization, particularly the Weyl quantization. We demonstrate our points by constructing time of arrival operators without quantization and from these recover their classical counterparts

    Structure Characterization with Thermal Wave Imaging

    Get PDF
    Thermal imaging is a technique of recent interest for the nondestructive evaluation of materials. This method attempts to characterize the internal structure of a sample (perhaps to locate flaws-cracks, bubbles, corrosion, etc.) by using its surface temperature response to an external heating. Some recent work on this subject is detailed in [2], [3], [4] and [6]

    Property (RD) for Hecke pairs

    Full text link
    As the first step towards developing noncommutative geometry over Hecke C*-algebras, we study property (RD) (Rapid Decay) for Hecke pairs. When the subgroup H in a Hecke pair (G,H) is finite, we show that the Hecke pair (G,H) has (RD) if and only if G has (RD). This provides us with a family of examples of Hecke pairs with property (RD). We also adapt Paul Jolissant's works in 1989 to the setting of Hecke C*-algebras and show that when a Hecke pair (G,H) has property (RD), the algebra of rapidly decreasing functions on the set of double cosets is closed under holomorphic functional calculus of the associated (reduced) Hecke C*-algebra. Hence they have the same K_0-groups.Comment: A short note added explaining other methods to prove that the subalgebra of rapidly decreasing functions is smooth. This is the final version as published. The published version is available at: springer.co

    On the equivalence of Eulerian and Lagrangian variables for the two-component Camassa-Holm system

    Full text link
    The Camassa-Holm equation and its two-component Camassa-Holm system generalization both experience wave breaking in finite time. To analyze this, and to obtain solutions past wave breaking, it is common to reformulate the original equation given in Eulerian coordinates, into a system of ordinary differential equations in Lagrangian coordinates. It is of considerable interest to study the stability of solutions and how this is manifested in Eulerian and Lagrangian variables. We identify criteria of convergence, such that convergence in Eulerian coordinates is equivalent to convergence in Lagrangian coordinates. In addition, we show how one can approximate global conservative solutions of the scalar Camassa-Holm equation by smooth solutions of the two-component Camassa-Holm system that do not experience wave breaking
    • …
    corecore